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EDITORIAL 

Dr Ham’s Test Revisited 

N 1937, Thomas Hale Ham made a remarkable observa- I tion: the cells of patients with paroxysmal nocturnal 
hemoglobinuria (PNH) are hemolyzed when incubated 
with acidified normal serum.’ This lysis appeared to be due 
to the activation of complement because procedures that 
inactivated complement abolished the reaction.’ Because 
the red blood cells in no other disease appeared to share 
this peculiarity, this test became the sine qua non for the 
diagnosis of the d i~ease .~  

In fact, the phenomenon had been observed some years 
previously by Hijmans van den Bergh, who had acidified 
serum with “carbonic acid” and had noted the “striking 
result” that the cells of the patient with “ictere hemolytique 
avec crises hemoglobinuriques” were lysed, whereas nor- 
mal cells were not.4 Although he suspected that comple- 
ment was the cause of the hemolysis, he could not prove it 
because the amount of fresh serum he added after inactiva- 
tion of complement was insufficient to carry the reaction. 

Both Hijmans van den Bergh and Ham noted that 
acidification of the patient’s own serum could affect the 
lysis of his own cells. For many years, this was puzzling 
because antibody was the only known means by which 
complement could be activated and no evidence of autoanti- 
bodies could be detected in the autologous serum of most 
patients. The explanation of this paradox became apparent 
when Pillemer et a15 delineated the alternative pathway of 
complement activation that did not depend on antibody. It 
was soon shown that the activated complement responsible 
for the lysis in acidified serum arose by activation of this 
alternative pathway, and this reaction remained one of the 
strongest arguments in favor of the alternative pathway at a 
time when its very existence was under considerable attack.6 

Two questions were asked by the acidified serum test: (1) 
How is complement activated? and (2) Why are PNH 
erythrocytes lysed whereas normal cells are not? 

The reactions of the alternative pathway have been 
carefully worked out.’ The primary step is the fixation to the 
membrane of C3; this is accomplished either through the 
spontaneous “tick over” activation of plasma C3 through 
spontaneous hydrolysis of a thiolester bridge characteristic 
of the molecule or through the enzymatic activation of the 
natural molecule, again with the resultant rupture of the 
thiolester bond and covalent fixation to membrane enti- 
ties.’.’ Once C3b is atfixed, it binds factor B, which is then 
activated to a serine protease after cleavage by factor D. 
This “convertase” complex, C3bBb, can then act as an 
“autocatalytic” amplification step in enzymatically cleaving 

C3 to C3b, thus forming evermore convertase complexes on 
the membrane. 

This process appears to be aided by two factors. Acidifi- 
cation in some way not entirely delineated increases the 
activation of the pathway. It is not clear whether this is due 
to optimization of reaction conditions for one of the 
enzymes or for the fixation of C3b to membrane compo- 
nents. The optimum pH is about 6.2, the pH recommended 
in the performance of the acidified serum lysis test. 

Furthermore, May et a1” showed that the hemolysis of 
PNH erythrocytes in acidified serum could be increased by 
optimization of the concentration of Mg2’ to 0.015 mol/L If 
this was not done, not all of the abnormal cells were lysed 
and small populations of abnormal cells could not be 
detected. With the optimization of these factors, the test 
became both specific (with the exception noted below) and 
sensitive. 

Even more intriguing is the question of what is different 
about PNH cells that results in their lysis in this reaction. 
We showed that the reaction resulted in the deposition of 
large amounts of C3b on the cell membrane” and that this 
was due to a greater efficiency of the convertase complex on 
the PNH membrane.” This proved to be due to the fact that 
PNH cells lack a membrane protein that regulates the 
activity of the “convertase” complexes, C3bBb and C4b2a.I3 
This protein accelerates the disassembly of the bimolecular 
complexes and was called “decay accelerating factor” or 
DAF; more recently, it has been assigned the designation 
CD55. It was thought at first that its absence explained the 
sensitivity of these cells to activated ~omplement,’~ but it 
was soon realized that another factor or factors must also 
be missing to account for the reactions that were ~bserved.’~ 

That factor is the “membrane inhibitor of reactive lysis” 
or MIRL (now assigned the designation CD59).I6 Holguin 
et all7 showed that this protein, missing totally or in part on 
PNH red blood cells, regulates the activation of the 
membrane attack complex, which consists of C5b-9. Two 
groups have shown that at least one of the actions of the 
protein is to diminish the rate of assembly of the polymer- 
ized C9 complex’X.” through an interaction with both CS 
and C9.” 

A third protein has been postulated, the CS binding 
protein” or homologous restriction factor.22 The character- 
ization of this protein has been very difficult and it is now 
suspected that, in fact, it is simply a polymeric or otherwise 
altered form of CD59. 

How CD55 and CD59 interact to bring about the protec- 
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tion of normal cells is made more clear by the work of 
Wilcox et al. They demonstrate in the accompanying 
reportz3 that CD59 is the more important and that it may 
have some effect on the assembly or stability of the 
convertase complex as well as on the formation of poly- 
meric C9 complexes. Whatever its actions, the replacement 
of CD59 to the deficient cells in PNH restores most of the 
protection of normal cells against the attack by comple- 
ment. 

The lack on the cells of PNH patients of several proteins 
in addition to CD55 and CD59 (erythrocyte acetylcholinest- 
e~ase , '~  leukocyte alkaline phosphatase," CD16,'6 CD14,z7 
CD71,28 etc) suggested a common posttranslational defect 
rather than genetic deletion. It was found that all of these 
proteins are attached to the membrane by a glycosyl 
phosphatidylinositol (GPI) anchor that consists of phos- 
phatidylinositol, N-glucosamine, three mannose residues, 
and e than~ lamine .~~  The nascent proteins were attached by 
their carboxyl terminus to the ethanolamine by a transami- 
dation reaction in the endoplasmic reticulum. The defect in 
PNH has been thought to be due to some defect in these 
processes. 

Most recent evidence has suggested that the defect is in 
the synthesis of the anchor. Stafford et aI3' have shown that 
PNH granulocytes have normal mRNA and synthesize a 
protein of aberrant size.3' In a series of 10 patients, we have 
found that PNH granulocytes are unable to synthesize the 
complete anchor." Although the exact step or steps at 
which the defect occurs has not been delineated, it is 
probably in the addition of the mannose or ethanolamine 
residues because these cells appear to be able to add the 
N-acetyl-glucosamine to phosphatidylinositol and to deacet- 
ylate it.33 In GPI-deficient murine lymphocyte cell lines, 
defects at each of the steps in the synthesis of the anchor 
have been defined,34 and the same may be true of PNH. 

What ever the defect or defects, it is not likely to be 
absolute in most cases. Most patients with PNH have 
erythrocytes that are intermediate in their sensitivity to 
complement?' These cells uniformly bear small amounts of 
CD55 and CD59,34336 again, even small amounts of comple- 
ment-protective proteins largely spare the cells premature 
destruction in vivo because the survival of these PNH I1 
cells is only slightly ~hortened.~' 

Recent studies have suggested that PNH granulocytes 
deficient in CD55 and CD59 may possess CD16, the 
Fc,,,,,,,III receptor, another GPI-linked pr~te in .~ '  Al- 
though proof is lacking, it may be that this molecule is 
preferentially transamidated to the anchor because of its 
amino acid structure. Some investigators have examined 
the conditions for this transamidation and have found that 
a hydrophobic sequence of at least 13 amino acids is 
req~ired.~'~~'' Six amino acids can serve as acceptors of the 
amide and these varied in the degree to which they were 
transamidated to the anchor; the terminal residue that was 
most readily transamidated was ~e r ine ,~ '  which is the 
terminal residue of the mature GPI-linked form of CD16." 
It may be that, when limited quantities of anchor are 
synthesized, a disproportionate amount is attached to this 
molecule. 

If the lack of GPI-linked proteins is the fundamental 
defect in PNH, then we should be able to explain all the 
clinical manifestations by their absence. As yet, we cannot. 
The marked tendency to thrombosis that these patients 
have may be in part due to the absence of CD59. Ando et 
a14' have shown that the insertion of polymeric C9 into the 
membrane of the platelet results in a process by which they 
are removed in external vesicles without lysis of the platelet. 
These vesicles do not keep the acidic phospholipids internal- 
ized, thus, they become the sites of prothrombinase forma- 
tion and are strongly proc~agulant .~~  If the CD59 of normal 
platelets is inhibited by antibody, more of these vesicles are 
formed because more nascent sites of polymerized C9 are 
built up. We have recently shown in preliminary data that 
PNH platelets form three to five times as many vesicles as 
normal platelets when limited activation of complement 
occurs. This might account for at least part of the throm- 
botic tendency in these patients. 

The explanation of other symptoms is even more obscure. 
Most patients have a deficiency of hematopoiesis that is 
greater or lesser in magnitude. A few patients become 
leukemic after having the PNH for several years. These 
manifestations are not readily explained by what we now 
know about the GPI proteins and their absence in these 
cells. 

HEMPAS 

In only one other syndrome have the red blood cells been 
shown to be lysed in acidified serum: hereditay erythroblas- 
tic multinuclearity with an acidified serum lysis test (some- 
times acronymically HEMPAS) or congenital dyserythropoi- 
etic anemia type II.45 This syndrome is so clearly different 
from PNH that no difficulty in distinguishing them is 
apparent. It is a congenital disorder and is characterized by 
ineffective erythropoiesis with marked multinuclearity of 
the  erythroblast^.^^ The red blood cells, once circulating, 
have a relatively normal survival. 

The reactions that bring about the lysis of the red blood 
cells in acidified normal serum are very different from those 
that cause lysis of PNH cells. In this case, the lysis is 
mediated by an IgM antibody that is present in most normal 
serum that reacts with an antigen present only on the cells 
of patients with this syndrome; this antibody can be 
absorbed from normal serum by HEMPAS cells but not by 
normal cells.47 The serum of patients with the disorder 
always lack the antibody and thus, unlike the case in PNH, 
lysis does not occur in autologous serum. 

These cells are more readily lysed by complement when it 
is activated by cold agglutinin antibodies. They exhibit 
extraordinarily large quantities of the i antigen on the 
surface but often react the same as normal cells with anti-I 
antibodies. The increased lysis occurs despite the fact that 
both HEMPAS cells and normal cells may bind the same 
amount of antib~dy.~' Careful analysis showed that this was 
due to the fact that much more C4 was fixed for a given 
amount of antibody and C1 on HEMPAS cells than on 
normal cells, thus accounting for the greater activation of 
complement. This contrasts with PNH cells on which the 
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fixation of C4 is normal but, because of the defects 
described previously, the fixation of C3 is vastly greater. 
This defect in HEMPAS cells closely resembles the effect of 
removal of sialic acid by the action of sialidase on the 
reactions of 

The defect in HEMPAS has been ascribed to the inability 
to synthesize certain biantennary lactosaminylglycans of the 
hematopoietic cells. These molecules are constructed on a 
complex polymannose core and have N-acetylglucosamine 
as the first sugar of a long series of repeated aminyllactose 
 group^.^" The molecules terminate in a sialic acid residue. 
Three enzyme defects involved in the generation of these 
moieties have been found to result in the abnormalities 
characteristic of HEMPAS. In one, one of the enzymes 
responsible for the first N-acetylglucosamine is missing, 
resulting in the absence of the entire sialylated antenna?l In 
the second, there is a a deficiency of the membrane-bound 
form of galactosyltransfera~e,~~ which results in markedly 
attenuated antennae. In the third, the metabolism of the 
mannose-containing core is defective because of a defect in 
the gene encoding a-mannosidase II.53 In each, there is 

defective glycosylation of surface membrane proteins, result- 
ing in the loss of sialic acid from the surface. 

How these defects result in the erythroblastic multinucle- 
arity characteristic of this syndrome is not clear, and this 
has led to the suggestion that these defects are secondary to 
other dyshematopoietic defects. However, no other specific 
defects have been found. Furthermore, the fact that three 
enzyme defects that lead to the same biochemical result 
lead to a similar cellular abnormality suggests that these 
structures are important in membrane biosynthesis. 

The somewhat serendipitous observation of Dr Ham has 
turned out to be one of great interest indeed. It has allowed 
the simple and accurate diagnosis of a disease of some 
importance. Equally important, the investigation of its basis 
has led to a number of seminal observations in immunology 
and cell biology. Rarely has so much come from such simple 
beginnings. 

WENDELL F. ROSSE, MD 
Departments of Medicine and Microbiology and Immunology 

Duke University Medical Center 
Durham, NC 
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